

Microwave Characterization of Ferroelectric Thin Films for Novel Compact Tunable BST Filters

Rosa De Paolis^{1,2}, Fabio Coccetti^{1,2}, Sandrine Payan³, Anthony Rousseau³, Mario Maglione³, Guillaume Guegan⁴ ¹LAAS-CNRS, Toulouse ²Université de Toulouse ³CNRS, Université de Bordeaux, ICMCB, Pessac ⁴ST Microelectronics, Tours - FRANCE

LAAS-CNRS

	Reference	Permittivity @ 0V	Loss Tangent	Tunability
	Gevorgian [2003]	150	0.01 @ 20 GHz	40 %
	Gevorgian [2004]	158-169	0.025 @ 45 GHz	40 %
Top Metal	Gevorgian [2006]	208	0.02 @ 10 GHz	
BST layer Bottom Metal	Lancaster [2008]	300	0.02	
Substrate	Ong [2009]		0.03 @ 10 GHz	30 %

Universite

Filter Tunability = 88% $(f_0(V_{min})-f_0(V_{max}))/f_0(V_{min})$

Good performance if compared to the stateof-the-art of ferroelectric band-pass filters [3]

[3] S.L. Delprat, J.H. Oh, F. Xu, L. Li, E.E. Djoumessi, M. Ismail, M. Chaker, and K. Wu, *"Fully Distributed Tunable Bandpass Filter Based on Ba*_{0.5}Sr_{0.5}TiO₃ Thin-Film Slow-Wave Structure," International Journal of Microwave Science and Technology, 2011.

life.augmented

	Courreges [2009]	29	30	17.2%	15.5-15.5	6.9-2.5	0.23
	Su [2008]	2.7	200	29.6%	9.3-8.6	25.7-14.3	0.15
	Pleskachev [2004]	4.4	150	7.7%	2.6-2.4	14.8-7.8	0.27
	Subramanyam [2001]	16.68	100	2.9%	7.6-9.5	8.1-5.25	0.05
	Dolprot [2011]	6.3	30	9%	17.9-15.1	6-6.3	0.08
	Delprat [2011]	6.95	30	30.2%	23.3-15.8	8.4-9.4	0.15
	This work	0.66	15	88%	30-30	5.8-3.2	0.52

 $FoM_{dB^{-1}} = \frac{f_0(V_{max}) - f_0(V_{min})}{\sqrt{\Delta f(V_{max}) * \Delta f(V_{min})} * \sqrt{IL(V_{max}) * IL(V_{min})}}$ [3]

Conclusions

Science des matériaux

Sciences moléculaires

1) Microwave characterization of (Ba,Sr)TiO₃ thin films

(120 to 300nm): permittivity, loss tangent, and tunability under 0 to 15 V extracted by fitting between measurements and a fully-comprehensive lumped element equivalent circuit

2) Compact tunable filter

based on BST capacitors ✓ (total size 2.53 x 5.88 mm²):- ✓

- Central frequency tunability = 88% (657 MHz-1235 MHz)
- Fractional bandwidth constant at 30%
 - Insertion loss = 3.2 5.8 dB
- ✓ Return loss < -9 dB
- Out of band rejection (at $2f_0$ and at $3f_0$) < -25 dB

2nd Workshop and Management Commitee/Working Group Meeting for COST IC1301 WIPE (Wireless Power Transmission for Sustainable Electronics) September 29-30, 2014, CNRS-LAAS, Toulouse, France